Germ line determinants are not localized early in sea urchin development, but do accumulate in the small micromere lineage.

نویسندگان

  • Celina E Juliano
  • Ekaterina Voronina
  • Christie Stack
  • Maryanna Aldrich
  • Andrew R Cameron
  • Gary M Wessel
چکیده

Two distinct modes of germ line determination are used throughout the animal kingdom: conditional-an inductive mechanism, and autonomous-an inheritance of maternal factors in early development. This study identifies homologs of germ line determinants in the sea urchin Strongylocentrotus purpuratus to examine its mechanism of germ line determination. A list of conserved germ-line associated genes from diverse organisms was assembled to search the S. purpuratus genome for homologs, and the expression patterns of these genes were examined during embryogenesis by whole mount in situ RNA hybridization and QPCR. Of the 14 genes tested, all transcripts accumulate uniformly during oogenesis and Sp-pumilio, Sp-tudor, Sp-MSY, and Sp-CPEB1 transcripts are also uniformly distributed during embryonic development. Sp-nanos2, Sp-seawi, and Sp-ovo transcripts, however, are enriched in the vegetal plate of the mesenchyme blastula stage and Sp-vasa, Sp-nanos2, Sp-seawi, and Sp-SoxE transcripts are localized in small micromere descendents at the tip of the archenteron during gastrulation and are then enriched in the left coelomic pouch of larvae. The results of this screen suggest that sea urchins conditionally specify their germ line, and support the hypothesis that this mechanism is the basal mode of germ line determination amongst deuterostomes. Furthermore, accumulation of germ line determinants selectively in small micromere descendents supports the hypothesis that these cells contribute to the germ line.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanos functions to maintain the fate of the small micromere lineage in the sea urchin embryo.

The translational regulator nanos is required for the survival and maintenance of primordial germ cells during embryogenesis. Three nanos homologs are present in the genome of the sea urchin Strongylocentrotus purpuratus, all of which are expressed with different timing in the small micromere lineage. This lineage is set-aside during embryogenesis and contributes to constructing the adult rudim...

متن کامل

Molecular markers of oocyte and primordial germ cell development in the sea urchin

Beginning over 150 years ago, sea urchins have been an essential experimental tool for our understanding of fertilization and early development. Here we summarize our recent progress on the molecular mechanisms of oocyte development and fertilization in the sea urchin resulting from completing the sequence of the purple sea urchin genome. This genomic information has enabled us to predict gene ...

متن کامل

Small micromeres contribute to the germline in the sea urchin.

Many indirect developing animals create specialized multipotent cells in early development to construct the adult body and perhaps to hold the fate of the primordial germ cells. In sea urchin embryos, small micromeres formed at the fifth division appear to be such multipotent cells: they are relatively quiescent in embryos, but contribute significantly to the coelomic sacs of the larvae, from w...

متن کامل

Piwi regulates Vasa accumulation during embryogenesis in the sea urchin.

BACKGROUND Piwi proteins are essential for germ line development, stem cell maintenance, and more recently found to function in epigenetic and somatic gene regulation. In the sea urchin Strongylocentrotus purpuratus, two Piwi proteins, Seawi and Piwi-like1, have been identified, yet their functional contributions have not been reported. RESULTS Here we found that Seawi protein was localized u...

متن کامل

Vasa protein expression is restricted to the small micromeres of the sea urchin, but is inducible in other lineages early in development.

Vasa is a DEAD-box RNA helicase that functions in translational regulation of specific mRNAs. In many animals it is essential for germ line development and may have a more general stem cell role. Here we identify vasa in two sea urchin species and analyze the regulation of its expression. We find that vasa protein accumulates in only a subset of cells containing vasa mRNA. In contrast to vasa m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Developmental biology

دوره 300 1  شماره 

صفحات  -

تاریخ انتشار 2006